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Auditory nerve fiber modeling: A stochastic Melnikov approach
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Well-known experiments have established two basic features of auditory nerve fiber dynamics. First, har-
monic excitation with constant amplitude produces mean firing rates that are largest for excitation frequencies
contained in a relatively narrow best interval; for frequencies outside that interval mean firing rates decrease
until, for both low and high frequencies, they become vanishingly small. Second, white or nearly white noise
excitation results in multimodal interspike interval histograms. These features suggested the development of a
strongly asymmetrical bistable model to which Melnikov theory applies. We show that, unlike the Fitzhugh-
Nagumo equation, such a model is capable of reproducing both basic features of the dynamics. We also show
that the model is consistent with experimental results on response patterns for excitation by two harmonics in
the presence of spontaneous activity. The Melnikov properties of the proposed model explain both its quali-
tatively satisfactory performance and its potential for stochastic resonant behavior. Numerical tests confirm the
robustness of the proposed mod&1063-651X98)03304-3

PACS numbes): 87.10+e, 05.40+j, 05.45+b

I. INTRODUCTION served dynamical features noted earlier. The model is also
consistent with experimental results on response patterns for
The auditory nerve fiber is a device of interest to bothexcitation by two harmonics in the presence of spontaneous
neurophysiologists and signal processing engineers. Experactivity. Our model belongs to the wide class of systems to
ments have established two basic features of its dynamicsvhich Melnikov theory is applicabld5-7]. Its perfor-
First, mean firing rates produced by harmonic excitation inmance can be interpreted transparently in terms of that
the presence of weak noise are largest for excitation frequenheory, which is also applicable to the investigation of the
cies contained in a relatively narrow best interval; for fre-model’'s potential for stochastic resonant behavior, a phe-
guencies outside that interval mean firing rates decrease anglpmenon that has been shown recently to be significant for
for both low and high frequencies, become vanishingly smalthe transmission of information by certain types of neuronal
[1] (Fig. 1). Second, white or nearly white noise excitation systemg8]. The ability of the proposed model to reproduce
results in multimodal interspike interval histograSIH's)  qualitatively dynamic behavior under predominantly har-
with modes approximately equal to integer multiples of themonic or quasiperiodic forcing or under stochastic forcing is
period corresponding to the nerve fiber’s best frequd2dy due to the following basic properties of a wide class of
(Fig. 2. bistable one-degree-of-freedom oscillators subjected to har-
The Fitzhugh-Nagum¢@HN) model appears to be unable monic forcing:(i) For any fixed excitation frequency, there
to reproduce these two dynamical features. Accordin@lo exists a range of excitation amplitudes for which the mean
in the absence of noise the FHN model predicts correctlyescape rate increases as the excitation amplitude increases
that, as the excitation frequency increases beyond the beshd(ii) for any fixed excitation amplitude within that range,
frequencies, the amplitude of the harmonic signal needed tthere exists a “best” frequency for which the mean escape
cause firing increases sharply. However, the model fails toate is largest and mean escape rates decrease monotonically
predict a similarly sharp increase for excitation frequenciess the absolute value of the difference between the excitation
lower than the best frequenciéBig. 3). In the presence of frequency and the best frequency incred&gsWe verify in
noise the disagreement between typical FHN model predicthis paper that these properties are robust.
tions and the experimental results[dff appears to be even We describe the proposed model in Sec. Il. In Sec. Il we
stronger; see Ref3], p. 561. Also, according t¢4], for  review briefly relevant results of Melnikov theory and show
nearly white noise excitation the FHN model yields a unimo-that, in view of the experiments 1], the proposed model is
dal ISIH (Fig. 4), in disagreement with the experimental re- suggested naturally by those results. In Sec. IV we discuss
sults of[2]. the model's chaotic motion and its ability to reproduce the
We propose a dynamical model consisting of an asymf{iring behavior of the auditory nerve fiber. In Sec. V we
metric bistable damped forced one-degree-of-freedom oscilllustrate the model’s ability, inherent in its Melnikov prop-
lator whose undamped, unforced counterpart has homoclinierties, to reproduce qualitatively the dependence on the fre-
orbits. A nerve fiber firing corresponds in this model to anquency and amplitude of a harmonic excitation’s effective-
escape from a potential well. We show that, in contrast to theess in causing firingescapes In Secs. IV and V we also
FHN model, our model reproduces the experimentally ob-discuss the model’s robustness. In Sec. VI we show that, for
the proposed model, excitation by white noise results in mul-
timodal ISIH’s, in agreement with experiment. We also dis-
*Permanent address: Institute of Physics, Cracow Pedagogicalss a set of experimental results obtained under excitation
University, Podchoraych 2, Krakav, Poland. by a sum of two harmonics in the presence of spontaneous
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FIG. 3. Dependence of the minimum amplitude needed to pro-
duce firingsymin on the frequency of the harmonic excitation in the
absence of noise, as modeled by the Fitzhugh-Nagumo equation
(after[3]). The horizontal scale is logarithmic.
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FIG. 1. Dependence of the mean firing riteon frequency and . . .. . . .
amplitude of harmonic excitatiofafter [1] where T,o,=20 9. (K H(x) is the unit stegHeaviside function. The dimensional

=QIT,o, WhereQ is the total number of spikes observed in time COUNterparts of the variableand of typical excitation terms
T, for harmonically excited auditory nerve fiber in a squirrel are discussed in the Appendj&.is a damping parameter and
monkey) Dashed lines indicate levels of spontaneous firing. V(x) is a potential function. We need expressions ¥¢K)

and values of the parametgrsuch that, under excitation by
activity and show that our model is consistent with thoseStimuli matching those reported in experiments, € yield
results. Section VII notes the relation between the model'§esponses matching the observed behavior. In addition, it is
Melnikov properties and its potential for stochastic resonanfiecessary to ascertain that Edj) is a robust systenalter-

behavior. Section VIII presents our conclusions. native terms are “coarse system” or “structurally stable sys-
tem”).
Il ASYMMETRIC BISTABLE MODEL OF AUDITORY . S‘I;Z;unperturbed counterpart of H@) is the Hamiltonian
NERVE FIBER RESPONSE 4
We model the response of the auditory nerve fiber by the x==V'(x). ()]

nondimensional equation . . .
a We assume tha¥(x) is a double-well potential with a bar-

rier whose maximum occurs at=0 [Fig. 5a)]. Because
motions with firings are asymmetrical, we also assume that
the potential is asymmetric@Fig. 5(b)].
Equation(3) has a hyperbolic fixed point at the origin.
(D) Emerging from this point in forward and reverse time are the
unperturbed system’s homoclinic orbits, denckfedandl” ~

x=—V'(x)+&(x)

X[ o1 COS wost) + oz COK wost) + o G(t) — BX],

where in the phase plane diagram of Fig(bh The homoclinic
orbits act as impermeable separatrices: A motion of the un-
e(X)=1—H(x). 2 perturbed system that starts inside a region enclosed by a
separatriXwe refer to that region as a coremains confined
200 to the core for all time; that is, the motion never escapes
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FIG. 2. Interspike interval histogram for response to white noise t (s)

of auditory nerve fiber in a squirrel monkégfter [2]). The inter-

rupted line indicates the level of the spontaneous firing rate. Modes FIG. 4. Interspike interval histogram for the response induced
are approximately equal to integer multiples of the period corre-by white noise as simulated by the Fitzhugh-Nagumo equatbn
sponding to the fiber's best frequency. ter [4]).
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1 i wherey, = V27V o(w)Aw, Aw=wc /N, ox=KAw, oy
() ® is the frequency beyond which the spectrum vanishes or is
negligibly small(the cutoff frequency ¢, is a random vari-
. e/ able uniformly distriputed if0,27], and N ?s finite, albeit
0 " % large[10]. The Melnikov necessary condition for chaos can
then be approximated by an expression with exactly the same
form as Eq.(5). It follows from Eq. (6) that, for any given
amplitudesyy; (i=1,2) [see Eq(1)] the respective harmonic
-l . e e functions are less effective in promoting chaos if their fre-
x x quencies are far from the frequenay,, of the Melnikov
FIG. 5. (a) PotentialV(x) [Eq. (7)] (@, =49, &,=1) and (b) scale_fact_or’s peak and the st(_)chastic forcing is similarly less
phase plane diagram showing homoclinic orbits and an orbit visit€ffective if most of the power in the spectrum of the process
ing the half planex<0 andx>0. G(t) is distributed far fromw, [6]. Like Eq.(5) on which it
is based, this statement is, strictly speaking, valid for asymp-

from the potential well associated with that core. A motiontotically small perturbations. However, as shown, for ex-
that starts outside the core remains outside it for all time an@mple, in[11], it remains valid, in a qualitative sense, even if

visits periodically the two potential wells. An orbit describ- the perturbations are relatively large.

orbits can be viewed as intersections of the system’s stabfgystem’s counterpart of the core can occur only in the half

and unstable manifolds with a plane of sectiarx{. For the pIane_x£0 since l;)v;lr_]g tr? tnelfforlm OfOE_?_(ﬁ.) the systehm
unperturbed system the stable and unstable manifolds coiffemains unperturbed in the half plare-0. This means that

cide. The perturbation causes the stable and unstable marlihe system can exhibit chaotic transport if.the Melnikov nec-
folds to separate. If the Melnikov necessary condition foreSsary condition for chaos, Ep), is satisfied for the shal-

chaos is satisfied, escapes from a potential well can occd?W:r po:e(r;nal er” Ef Fs'g' fa)' that itai
even if the motions start in the perturbed system’s counter- s noted earlier, EqL5) shows that an excitation compo-

part of the core(As noted earlier, the term “escapes” is nent is r_nore(less effective in inducing escapes as its fre-
used in the context of multistable system dynamics and Corg]lcjer:]cyl\/:slc]lt()ser tajf?rt?er from th_?_rf.r ecg)uincy Of. thg p_(leak
responds in this work to the neurophysiological term “fir- of the Melnikov scale gctoﬁ(w). IS behavior 1S simiar
ings.”) We discuss the Melnikov necessary condition forto the observed behavior summarized by the typical experi-

escapes in the next section. For a summary providing adgmental resu_lts_ of Fig. 1. The scale fac&{w) for the system
tional background and details see, e[g.9]. should be similar to the bell-shaped response curves of Fig. 1

and its peak should occur at the best frequency indicated by
the experiments.
For a given potentiaV/(x), the homoclinic orbits are ob-
tained by integrating Eq(3) with initial conditions x=x
Consider the case where in Ed) the forcingG(t) has  =0. The scale facto®(w), which, as recalled earlier, corre-
the expression sponds to asymptotically small perturbations, is then ob-
tained as the sine transform of the homoclinic orbit’s ordi-
nate in the phase pla&2]. However, the inverse operation
G(t):gl Yk Cod ot + i) (4)  wherebyV(x) is obtained from a given scale factSfw) is
considerably more difficult, the more so as in practical ap-
The Melnikov necessary condition for chaos, which in thisPlications the perturbation is not asymptotically small. For

system is also the necessary condition for escapes, is thenthis reason we need to choose a functional formV¢x)
that, with appropriate choices of parameters, yields a scale

N factor S(w) qualitatively similar in shape to the typical re-
— BAI3+ yp1S(wgy) + 7028(w02)+crz YeS(w,) >0, sponse curves of Fig. 1. A reasonably satisfactory model of
k=1 V(x), which, as is shown subsequently, is qualitatively con-
) sistent with the experimental results [df,2,14, is

V(x)

-

Ill. MELNIKOV NECESSARY CONDITION FOR ESCAPES
FROM A POTENTIAL WELL

N

where the Melnikov scale fact@(») depends on the poten-
tial V(x) [5]. It follows from Eg.(5) that the contribution of V(X)= a(x)(— X212+ x%14), (7)
a harmonic component to the promotion of chaos, and es-
capes, depends on frequency via the ordinate of the Melni- N ) ] )
kov scale factoiS(w). which is a modified version of the Duffing-Holmes potential.

If G(t) is a Gaussian stochastic process with unit variancé? Ed. (7) a(x)=a =1 for x<0 and a(x)=a; for x>0,
and spectral density 2¥,(w), then over any finite time Wherea,>a. [It can be verified thav/’(0)=0.] The po-
interval, however large, it can be approximated as closely atential V(x) is depicted in Fig. &@) for a,=49. The Melni-
desired by the sum kov scale factor corresponding to the left-hand side well of

Eq.(7) is
N

GN(D)= 24 i COg et + i), © S(w)=v2m seclimwl2). ®
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Equation(8) is plotted in Fig. 6. Note that the shape of the y ) )
scale factor of Fig. 6 is qualitatively similar to the shapes of _FIC: 8. Dependence of the firing rateon the harmonic excita-
the response curves of Fig. 1. Figure 6 shows that for oufl® frequencyfo=wo,/2m for two excitation amplitudesys,,
model, just as for the experiments [df], excitation compo- smulated py Eq(1) with ha_lrmonlc excitation in the presence of
nents become increasingly ineffective in inducing ch@osl "% Solid and dashed lines correspondafo-1, a,=49 and
therefore escapes, i.e., firingss their frequencies are farther =1, a; =64, respectively.

away from a best frequency. This observation originally mo- . . . - L .
tivated the choice of the model developed in this work. the simulations is intended to mimic the noise inducing the

Throughout this paper it is assumed that the double—side]abers spontaneous _a<_:t|V|ty._As n_o_ted in RET], p. 776, the
responses may exhibit multiple firings in response to a har-

spectral density o6(t) is monic excitation, rather than a single discharge. A double
27V () =27/ (1+ rPw?d), (99  firing can be seen in Fig. 7 &tTy;~80.
The question arises whether our system is robust, i.e.,
in which 7=0.02; that is, the spectral density varies slowly whether its behavior remains qualitatively the same if the
with frequency and is therefore a close approximation ofparameters of the potentisl(x) and the parametg® change

white noise. within reasonably wide limits corresponding to the parameter
region of interest in the experiments. We checked robustness
IV. CHAOTIC RESPONSE TO HARMONIC by performing a large number of simulations with 09,
AND STOCHASTIC EXCITATION <1.05, 45< ar<64, and 014:ﬁ<03 In all cases exam-

ined the time histories of the responses exhibited no qualita-

We now describe a typical chaotic motion pattern for ourtive changes with respect to the time history of Fig. 7. Such
model. Denote byR ™ the perturbed system’s counterpart of changes were observed, however, for parameter values out-
the core enclosed by the homoclinic orbéeparatrix I'".  side these intervals. For example, f80.4 or larger no
Following an escape fro® -, firing occurs and the motion  firings were observed, while fq8~0.01 or smaller the mo-
evolves outside the core enclosed by the impermeable sepgion consisted only of essentially periodic firings with period
ratrix T'" until its return to the half plane=<0. Chaotic  close to the harmonic excitation period. We note that the
transport intoR ~, followed by another escapéring), can  |arge value ofa, relative toe, is needed to ensure that the
then occur again. A typical time history of this type of mo- average duration of the spikes is sufficiently small compared
tion is shown in Fig. 7, based on EQ.), the potential func-

tion of Fig. 5a), the parameter valuegy;=0.11, y5,=0, 0.015
B=0.16, 0=0.005, andwy;=1.0, and the spectral density
of the proces&(t) given by Eq.(9). The weak noise used in
2
= 0.010 -
2 o]
e
il
0.005 ; ‘
0.15 0.20 0.25 0.30
-2
0 100 B

t/T
* FIG. 9. Dependence of the mean firing raten the damping
FIG. 7. Time history of the motion induced by harmonic exci- parameters. Solid and dashed lines correspondjg=0.12 and
tation in the presence of noise; see Eb). (Tg1=27/ wg,). vo1=0.1, respectively.
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to the average time between firings, as seen in Fig. 7. Faas for Fig. 7, we also performed simulations for a number of
additional information on robustness tests see Sec. V. values 0.14.3<0.3. Results of the simulations are shown
in Fig. 9.

V. DEPENDENCE OF MEAN FIRING RATE
ON FREQUENCY OF HARMONIC EXCITATION VI. INTERSPIKE INTERVAL HISTOGRAMS

In this section we wish to ascertain that, for finite as op- We assume agairy,=0, 8=0.16, 0=0.005, and the
posed to asymptotically small perturbations, the dependencspectral density of5(t) given by Eq.(9). Figures 10a)—
of the model response on the Melnikov scale fa¢tig. 6  10(c) show ISIH's for y5;=0.12 and wg=1.25, wq;
is maintained in a qualitative sense and response patterns afe1.05, andwgy;,=0.8, respectively. The best frequency in
therefore similar to those obtained experimentalljlih(Fig.  this case iswo~1.1 (Fig. 6), that is, Figs. 1()—10(c) cor-
1). We assumeyy,=0, 8=0.16, 0=0.005, and the spectral respond, respectively, to harmonic excitation frequencies
density of G(t) given by Eq.(9). We show in Fig. 8 the higher than, approximately equal to, and lower than the best
dependence of the mean firing rateon the frequencywy;  frequency. The period of the harmonic excitation Tig;
for two amplitudes of the harmonic forcingly;=0.12 and  =2x/wg,. The ISIH's of Fig. 10a)—10(c) were obtained by
v01=0.10. For any given frequency, the larger amplitudesimulation from Eq.(1). They are multimodal and agree
causes a larger firing rate. For both amplitudes the harmonigualitatively with ISIH’s based on experimen@]. Both for
excitation is seen to be increasingly ineffective in producingthe experiments and for Figs. H)-10(c) the peaks in the
firing as the excitation frequencies are farther away fromiSIH'’s are grouped around the integer multiples of the period
either end of a relatively narrow best frequency interval. Theof the harmonic excitation. Nevertheless, the firing is aperi-
dependence of the mean firing rate on amplitude and freedic, which is consistent with the fact that the motions of
quency is indeed qualitatively similar to the experimentalFigs. 1da)—10(c) are chaotic even in the absence of noise.
results of Fig. 1. The results of Fig. 8 are consistent withThe preference for the forcing period and its integer mul-
Melnikov theory only in a qualitative sense as the peak of theiples reflects the large spectral ordinate of the response at
Melnikov scale factor(Fig. 6) does not coincide with the the forcing frequencywhich is typical of the harmonically
peaks of the mean rate plots. This is ascribed to second-ordésrced Duffing oscillator; see Ref13], p. 88 and the cor-
effects resulting from the relatively large perturbation. responding subharmonics. Note the presence in Fig. 10 of

We performed checks of the system’s robustness also byomponents with periods shorter than the dominant period.
obtaining from Eq.(1) mean firing rate plots forg;=0.1, As was pointed out in Ref.1], p. 776, these components
70.=0.12, and various excitation frequencies, under the asreflect the existence of multiple firings.
sumption thata, =64, rather tharw, =49, all other param- Like the results of Figs. 1@-10(c), ISIH's based on the
eters being unchanged. The results corresponding to the§@N model[4] are in qualitative agreement with the experi-
two values are shown in Fig. 8 in interrupted lines and solidmental results of1]. However, for excitation by nearly white
lines, respectively. noise the FHN model does not appear to be in agreement

For a, =49, all other parameters excepbeing the same with experimental resulte?]: The IHIS’s obtained from the

0.05 0.22

(a) (e)

ISTH
ISIH

0.0 T T T T T T T T T 0.0

0.12 0.03

(b) (a)

ISIH
ISIH

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
t/Tos t/To
FIG. 10. Interspike interval histograms simulated from Bg: harmonic excitation in the presence of noise for excitation frequésjcy

larger than(b) approximately equal to, an@) smaller than the best frequeney, and(d) excitation by nearly white noisd.y; and T,
denote the period of the harmonic excitation and the period corresponding to the best frequency, respectively.
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FIG. 11. Interspike interval histograms simulated from EL).for excitation by two harmonics with frequencieg; and wg, in the
presence of noise. Dominant frequencies are controlle@kyie component with an inefficient frequency but relatively large amplitugde
and (b) the component with a frequeney,, close to the best frequency.

experiments are multimodal, whereas those based on thEhat potential exists provided thé) the signal frequency is
FHN model were found to be unimodal, as shown in Fig. 4sufficiently small in relation to the frequency of the Melni-
[4]. In contrast, simulations based on the proposed modelov scale factor’s peakii) in the absence of noise the signal
[see Eq(1)] agree well with the experimental results[@].  amplitude is too small to bring about chaotic exits from a
This is illustrated by Fig. 1@), which shows a typical ISIH  potential well, and(iii) the intensity of the noise is suffi-
based on Eq(1) with the same parameters as those of Figsciently small that the mean escape time induced by the signal
10(@)-10(c), except thatyo=0 ando=0.035, that is, the and the noise acting together is less than the period of the
only excitation is stochastic. The ISIH is multimodal with signal. By adding noise to the excitation the mean escape
periodicities closely related to the best frequency. The resultgme is brought in line with the period of the signal. A syn-
of Fig. 10(d) are consistent with Melnikov theory since com- chyonization effect then occurs wherein the broadband en-
ponents with the best frequenciése., frequencies closely gy associated with the chaotic hopping motion is depleted
related to the frequency of the Melnikov scale factor's peak 5nq transferred to the signal frequency. It is show®irthat
are the most effective in inducing escapes. The behavior Qfnger certain conditions stochastic resonance may be
the system can therefore be expected to be determined Bythieved more effectively by adding to the total excitation a
those components and their integer multiples. _ harmonic signal rather than noise. Since, as was pointed out
Melnikov theory as applied to our model is also in quali- ot the beginning of this section, the class of systems studied
tative agree_ment with resqlts of experiments in Wh|c_h auqlleIn [9] includes Eq.(1), all the results of9] pertaining to
tory nerve fibers were excited by two harmonic functions ingiochastic resonance are fully applicable to the model of the
the presence of spontaneous actiVity]. In those experi- ayditory nerve fiber proposed in this paper. There appears to
ments the frequency of one of the harmonic excitations, depe experimental evidence that stochastic resonance is exhib-
notedwy, was close to the best frequeney, while for the  jteq by some neuronal systerf8]. However, to our knowl-
second harmoni@g,< wg SO that its effectiveness in induc- edge, no stochastic resonance experiments are available on
ing firing was relatively weak. The results fif4] indicated  the auditory nerve fiber. We believe, in light of the above
that the ISIH are multimodal, with basic perio@o,  remarks, that such experiments would demonstrate that the
=2mlwgy Or Top=27/wg, according to whether the ratio ayditory nerve fiber can indeed experience the stochastic

7= Yo1/ vo2 Of the amplitudes corresponding é@; andwo;  resonance phenomenon.
is relatively large or small. Similar results may be expected

for our model, as can be seen from H§). Even though

S(wqq) is larger thanS(wqy), if the ratio # is sufficiently

small the motion can be dominated by the harmonic with
inefficient frequency. That this is indeed the case is shown We showed that existing experimental results motivated
by the simulations of Figs. 14 and 11b), for which wg;  the use of the stochastic Melnikov approach as a point of
=1.0~wg, wypp=0.06€w,, 8=0.25, andoc=0.0075. For departure for constructing a model of the auditory nerve fi-
Fig. 11(a), y5;=0.01 andyy,=0.3 (=0.033). Apart from ber. The proposed model is characterized by a strongly
the two peaks at/Tq,<1, which are ascribed to multiple asymmetric double-well potential and allows the use of a
firings, the spikes are grouped around the pefiiggdand its  novel chaotic dynamics technique, the stochastic Melnikov
integer multiples. For Fig. ib) y9,=0.1, y0,=0.16, and approach. The model also has an inherent capability for ac-

VIIl. CONCLUSIONS

period Ty, controls. commodating stochastic resonance phenomena. Numerical
simulations showed that the model reproduces qualitatively
VIl. POTENTIAL EOR STOCHASTIC RESONANCE features of the fiber behavior observed experimentally, in-

cluding features that appear not to be reproduced by the FHN
Equation (1) describes a bistable system whose unperimodel. Like the FHN model, our model is entirely phenom-
turbed counterpart, Eq3), has homoclinic orbits. It was enological and its success as a quantitative tool depends
shown in[9] that such a system has the potential for experi-upon the choice of appropriate values for its adjustable pa-
encing stochastic resonan(tkat is, an increase of the signal- rameters. Numerical tests confirmed the robustness of the
to-noise ratio achieved bincreasingthe noise intensity = proposed model.
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