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Auditory nerve fiber modeling: A stochastic Melnikov approach

Marek Franaszek* and Emil Simiu
Building and Fire Research Laboratory, Building 226, National Institute of Standards and Technology, Gaithersburg, Maryland 2

~Received 5 December 1996; revised manuscript received 1 December 1997!

Well-known experiments have established two basic features of auditory nerve fiber dynamics. First, har-
monic excitation with constant amplitude produces mean firing rates that are largest for excitation frequencies
contained in a relatively narrow best interval; for frequencies outside that interval mean firing rates decrease
until, for both low and high frequencies, they become vanishingly small. Second, white or nearly white noise
excitation results in multimodal interspike interval histograms. These features suggested the development of a
strongly asymmetrical bistable model to which Melnikov theory applies. We show that, unlike the Fitzhugh-
Nagumo equation, such a model is capable of reproducing both basic features of the dynamics. We also show
that the model is consistent with experimental results on response patterns for excitation by two harmonics in
the presence of spontaneous activity. The Melnikov properties of the proposed model explain both its quali-
tatively satisfactory performance and its potential for stochastic resonant behavior. Numerical tests confirm the
robustness of the proposed model.@S1063-651X~98!03304-2#

PACS number~s!: 87.10.1e, 05.40.1j, 05.45.1b
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I. INTRODUCTION

The auditory nerve fiber is a device of interest to bo
neurophysiologists and signal processing engineers. Exp
ments have established two basic features of its dynam
First, mean firing rates produced by harmonic excitation
the presence of weak noise are largest for excitation frequ
cies contained in a relatively narrow best interval; for fr
quencies outside that interval mean firing rates decrease
for both low and high frequencies, become vanishingly sm
@1# ~Fig. 1!. Second, white or nearly white noise excitatio
results in multimodal interspike interval histograms~ISIH’s!
with modes approximately equal to integer multiples of t
period corresponding to the nerve fiber’s best frequency@2#
~Fig. 2!.

The Fitzhugh-Nagumo~FHN! model appears to be unab
to reproduce these two dynamical features. According to@3#,
in the absence of noise the FHN model predicts corre
that, as the excitation frequency increases beyond the
frequencies, the amplitude of the harmonic signal neede
cause firing increases sharply. However, the model fails
predict a similarly sharp increase for excitation frequenc
lower than the best frequencies~Fig. 3!. In the presence o
noise the disagreement between typical FHN model pre
tions and the experimental results of@1# appears to be eve
stronger; see Ref.@3#, p. 561. Also, according to@4#, for
nearly white noise excitation the FHN model yields a unim
dal ISIH ~Fig. 4!, in disagreement with the experimental r
sults of @2#.

We propose a dynamical model consisting of an asy
metric bistable damped forced one-degree-of-freedom o
lator whose undamped, unforced counterpart has homoc
orbits. A nerve fiber firing corresponds in this model to
escape from a potential well. We show that, in contrast to
FHN model, our model reproduces the experimentally

*Permanent address: Institute of Physics, Cracow Pedago
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served dynamical features noted earlier. The model is a
consistent with experimental results on response patterns
excitation by two harmonics in the presence of spontane
activity. Our model belongs to the wide class of systems
which Melnikov theory is applicable@5–7#. Its perfor-
mance can be interpreted transparently in terms of
theory, which is also applicable to the investigation of t
model’s potential for stochastic resonant behavior, a p
nomenon that has been shown recently to be significant
the transmission of information by certain types of neuro
systems@8#. The ability of the proposed model to reprodu
qualitatively dynamic behavior under predominantly ha
monic or quasiperiodic forcing or under stochastic forcing
due to the following basic properties of a wide class
bistable one-degree-of-freedom oscillators subjected to
monic forcing:~i! For any fixed excitation frequency, ther
exists a range of excitation amplitudes for which the me
escape rate increases as the excitation amplitude incre
and~ii ! for any fixed excitation amplitude within that rang
there exists a ‘‘best’’ frequency for which the mean esca
rate is largest and mean escape rates decrease monoton
as the absolute value of the difference between the excita
frequency and the best frequency increases@5#. We verify in
this paper that these properties are robust.

We describe the proposed model in Sec. II. In Sec. III
review briefly relevant results of Melnikov theory and sho
that, in view of the experiments of@1#, the proposed model is
suggested naturally by those results. In Sec. IV we disc
the model’s chaotic motion and its ability to reproduce t
firing behavior of the auditory nerve fiber. In Sec. V w
illustrate the model’s ability, inherent in its Melnikov prop
erties, to reproduce qualitatively the dependence on the
quency and amplitude of a harmonic excitation’s effectiv
ness in causing firing~escapes!. In Secs. IV and V we also
discuss the model’s robustness. In Sec. VI we show that,
the proposed model, excitation by white noise results in m
timodal ISIH’s, in agreement with experiment. We also d
cuss a set of experimental results obtained under excita
by a sum of two harmonics in the presence of spontane
al
5870 © 1998 The American Physical Society
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57 5871AUDITORY NERVE FIBER MODELING: A . . .
activity and show that our model is consistent with tho
results. Section VII notes the relation between the mod
Melnikov properties and its potential for stochastic reson
behavior. Section VIII presents our conclusions.

II. ASYMMETRIC BISTABLE MODEL OF AUDITORY
NERVE FIBER RESPONSE

We model the response of the auditory nerve fiber by
nondimensional equation

ẍ52V8~x!1«~x!

3@g01 cos~v01t !1g02 cos~v02t !1sG~ t !2b ẋ#,

~1!

where

«~x![12H~x!. ~2!

FIG. 1. Dependence of the mean firing rateK on frequency and
amplitude of harmonic excitation~after @1# whereTtot520 s!. ~K
5Q/Ttot , whereQ is the total number of spikes observed in tim
Ttot for harmonically excited auditory nerve fiber in a squirr
monkey.! Dashed lines indicate levels of spontaneous firing.

FIG. 2. Interspike interval histogram for response to white no
of auditory nerve fiber in a squirrel monkey~after @2#!. The inter-
rupted line indicates the level of the spontaneous firing rate. Mo
are approximately equal to integer multiples of the period co
sponding to the fiber’s best frequency.
e
’s
t

e

H(x) is the unit step~Heaviside! function. The dimensiona
counterparts of the variablex and of typical excitation terms
are discussed in the Appendix.b is a damping parameter an
V(x) is a potential function. We need expressions forV(x)
and values of the parameterb such that, under excitation b
stimuli matching those reported in experiments, Eq.~1! yield
responses matching the observed behavior. In addition,
necessary to ascertain that Eq.~1! is a robust system~alter-
native terms are ‘‘coarse system’’ or ‘‘structurally stable sy
tem’’!.

The unperturbed counterpart of Eq.~1! is the Hamiltonian
system

ẍ52V8~x!. ~3!

We assume thatV(x) is a double-well potential with a bar
rier whose maximum occurs atx50 @Fig. 5~a!#. Because
motions with firings are asymmetrical, we also assume t
the potential is asymmetrical@Fig. 5~b!#.

Equation ~3! has a hyperbolic fixed point at the origin
Emerging from this point in forward and reverse time are
unperturbed system’s homoclinic orbits, denotedG1 andG2

in the phase plane diagram of Fig. 5~b!. The homoclinic
orbits act as impermeable separatrices: A motion of the
perturbed system that starts inside a region enclosed b
separatrix~we refer to that region as a core! remains confined
to the core for all time; that is, the motion never escap

e

es
-

FIG. 3. Dependence of the minimum amplitude needed to p
duce firingsgmin on the frequency of the harmonic excitation in th
absence of noise, as modeled by the Fitzhugh-Nagumo equa
~after @3#!. The horizontal scale is logarithmic.

FIG. 4. Interspike interval histogram for the response induc
by white noise as simulated by the Fitzhugh-Nagumo equation~af-
ter @4#!.
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5872 57MAREK FRANASZEK AND EMIL SIMIU
from the potential well associated with that core. A moti
that starts outside the core remains outside it for all time
visits periodically the two potential wells. An orbit describ
ing such a motion is shown in Fig. 5~b!. The homoclinic
orbits can be viewed as intersections of the system’s st
and unstable manifolds with a plane of section (x,ẋ). For the
unperturbed system the stable and unstable manifolds c
cide. The perturbation causes the stable and unstable m
folds to separate. If the Melnikov necessary condition
chaos is satisfied, escapes from a potential well can o
even if the motions start in the perturbed system’s coun
part of the core.~As noted earlier, the term ‘‘escapes’’ i
used in the context of multistable system dynamics and
responds in this work to the neurophysiological term ‘‘fi
ings.’’! We discuss the Melnikov necessary condition
escapes in the next section. For a summary providing a
tional background and details see, e.g.,@7,9#.

III. MELNIKOV NECESSARY CONDITION FOR ESCAPES
FROM A POTENTIAL WELL

Consider the case where in Eq.~1! the forcingG(t) has
the expression

G~ t !5 (
k51

N

gk cos~vkt1wk!. ~4!

The Melnikov necessary condition for chaos, which in th
system is also the necessary condition for escapes, is th

2b4/31g01S~v01!1g02S~v02!1s(
k51

N

gkS~vk!.0,

~5!

where the Melnikov scale factorS(v) depends on the poten
tial V(x) @5#. It follows from Eq.~5! that the contribution of
a harmonic component to the promotion of chaos, and
capes, depends on frequency via the ordinate of the Me
kov scale factorS(v).

If G(t) is a Gaussian stochastic process with unit varia
and spectral density 2pC0(v), then over any finite time
interval, however large, it can be approximated as closely
desired by the sum

GN~ t !5 (
k51

N

gk cos~vkt1wk!, ~6!

FIG. 5. ~a! PotentialV(x) @Eq. ~7!# ~a r549, a l51! and ~b!
phase plane diagram showing homoclinic orbits and an orbit v
ing the half planesx<0 andx.0.
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wheregk5A2pC0(vk)Dv, Dv5vcut /N, vk5kDv, vcut
is the frequency beyond which the spectrum vanishes o
negligibly small~the cutoff frequency!, wk is a random vari-
able uniformly distributed in@0,2p#, and N is finite, albeit
large @10#. The Melnikov necessary condition for chaos c
then be approximated by an expression with exactly the s
form as Eq.~5!. It follows from Eq. ~6! that, for any given
amplitudesg0i ( i 51,2) @see Eq.~1!# the respective harmonic
functions are less effective in promoting chaos if their fr
quencies are far from the frequencyvpk of the Melnikov
scale factor’s peak and the stochastic forcing is similarly l
effective if most of the power in the spectrum of the proce
G(t) is distributed far fromvpk @6#. Like Eq. ~5! on which it
is based, this statement is, strictly speaking, valid for asym
totically small perturbations. However, as shown, for e
ample, in@11#, it remains valid, in a qualitative sense, even
the perturbations are relatively large.

For Eq.~1! chaotic transport into and out of the perturb
system’s counterpart of the core can occur only in the h
planex<0 since owing to the form of Eq.~1! the system
remains unperturbed in the half planex.0. This means that
the system can exhibit chaotic transport if the Melnikov ne
essary condition for chaos, Eq.~5!, is satisfied for the shal-
lower potential well of Fig. 5~a!.

As noted earlier, Eq.~5! shows that an excitation compo
nent is more~less! effective in inducing escapes as its fr
quency is closer to~farther from! the frequency of the peak
of the Melnikov scale factorS(v). This behavior is similar
to the observed behavior summarized by the typical exp
mental results of Fig. 1. The scale factorS(v) for the system
should be similar to the bell-shaped response curves of F
and its peak should occur at the best frequency indicated
the experiments.

For a given potentialV(x), the homoclinic orbits are ob
tained by integrating Eq.~3! with initial conditions x5 ẋ
50. The scale factorS(v), which, as recalled earlier, corre
sponds to asymptotically small perturbations, is then
tained as the sine transform of the homoclinic orbit’s or
nate in the phase plane@12#. However, the inverse operatio
wherebyV(x) is obtained from a given scale factorS(v) is
considerably more difficult, the more so as in practical a
plications the perturbation is not asymptotically small. F
this reason we need to choose a functional form forV(x)
that, with appropriate choices of parameters, yields a s
factor S(v) qualitatively similar in shape to the typical re
sponse curves of Fig. 1. A reasonably satisfactory mode
V(x), which, as is shown subsequently, is qualitatively co
sistent with the experimental results of@1,2,14#, is

V~x!5a~x!~2x2/21x4/4!, ~7!

which is a modified version of the Duffing-Holmes potentia
In Eq. ~7! a(x)5a l'1 for x<0 and a(x)5a r for x.0,
wherea r@a l . @It can be verified thatV8(0)50.# The po-
tential V(x) is depicted in Fig. 5~a! for a r549. The Melni-
kov scale factor corresponding to the left-hand side well
Eq. ~7! is

S~v!5&p sech~pv/2!. ~8!

t-
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Equation~8! is plotted in Fig. 6. Note that the shape of th
scale factor of Fig. 6 is qualitatively similar to the shapes
the response curves of Fig. 1. Figure 6 shows that for
model, just as for the experiments of@1#, excitation compo-
nents become increasingly ineffective in inducing chaos~and
therefore escapes, i.e., firings! as their frequencies are farthe
away from a best frequency. This observation originally m
tivated the choice of the model developed in this work.

Throughout this paper it is assumed that the double-si
spectral density ofG(t) is

2pC0~v!52t/~11t2v2!, ~9!

in which t50.02; that is, the spectral density varies slow
with frequency and is therefore a close approximation
white noise.

IV. CHAOTIC RESPONSE TO HARMONIC
AND STOCHASTIC EXCITATION

We now describe a typical chaotic motion pattern for o
model. Denote byR1 the perturbed system’s counterpart
the core enclosed by the homoclinic orbit~separatrix! G2.
Following an escape fromR1, firing occurs and the motion
evolves outside the core enclosed by the impermeable s
ratrix G1 until its return to the half planex<0. Chaotic
transport intoR1, followed by another escape~firing!, can
then occur again. A typical time history of this type of m
tion is shown in Fig. 7, based on Eq.~1!, the potential func-
tion of Fig. 5~a!, the parameter valuesg0150.11, g0250,
b50.16, s50.005, andv0151.0, and the spectral densit
of the processG(t) given by Eq.~9!. The weak noise used in

FIG. 6. Melnikov scale factorS(v).

FIG. 7. Time history of the motion induced by harmonic ex
tation in the presence of noise; see Eq.~1! (T0152p/v01).
f
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the simulations is intended to mimic the noise inducing
fiber’s spontaneous activity. As noted in Ref.@1#, p. 776, the
responses may exhibit multiple firings in response to a h
monic excitation, rather than a single discharge. A dou
firing can be seen in Fig. 7 att/T01'80.

The question arises whether our system is robust,
whether its behavior remains qualitatively the same if
parameters of the potentialV(x) and the parameterb change
within reasonably wide limits corresponding to the parame
region of interest in the experiments. We checked robustn
by performing a large number of simulations with 0.95,a l
,1.05, 45,a r,64, and 0.14,b,0.3. In all cases exam
ined the time histories of the responses exhibited no qua
tive changes with respect to the time history of Fig. 7. Su
changes were observed, however, for parameter values
side these intervals. For example, forb'0.4 or larger no
firings were observed, while forb'0.01 or smaller the mo-
tion consisted only of essentially periodic firings with perio
close to the harmonic excitation period. We note that
large value ofa r relative toa l is needed to ensure that th
average duration of the spikes is sufficiently small compa

FIG. 8. Dependence of the firing rater on the harmonic excita-
tion frequency f 015v01/2p for two excitation amplitudesg01,
simulated by Eq.~1! with harmonic excitation in the presence o
noise. Solid and dashed lines correspond toa l51, a r549 and
a l51, a r564, respectively.

FIG. 9. Dependence of the mean firing rater on the damping
parameterb. Solid and dashed lines correspond tog0150.12 and
g0150.1, respectively.
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5874 57MAREK FRANASZEK AND EMIL SIMIU
to the average time between firings, as seen in Fig. 7.
additional information on robustness tests see Sec. V.

V. DEPENDENCE OF MEAN FIRING RATE
ON FREQUENCY OF HARMONIC EXCITATION

In this section we wish to ascertain that, for finite as o
posed to asymptotically small perturbations, the depende
of the model response on the Melnikov scale factor~Fig. 6!
is maintained in a qualitative sense and response pattern
therefore similar to those obtained experimentally in@1# ~Fig.
1!. We assumeg0250, b50.16, s50.005, and the spectra
density of G(t) given by Eq.~9!. We show in Fig. 8 the
dependence of the mean firing rater on the frequencyv01
for two amplitudes of the harmonic forcing:g0150.12 and
g0150.10. For any given frequency, the larger amplitu
causes a larger firing rate. For both amplitudes the harm
excitation is seen to be increasingly ineffective in produc
firing as the excitation frequencies are farther away fr
either end of a relatively narrow best frequency interval. T
dependence of the mean firing rate on amplitude and
quency is indeed qualitatively similar to the experimen
results of Fig. 1. The results of Fig. 8 are consistent w
Melnikov theory only in a qualitative sense as the peak of
Melnikov scale factor~Fig. 6! does not coincide with the
peaks of the mean rate plots. This is ascribed to second-o
effects resulting from the relatively large perturbation.

We performed checks of the system’s robustness also
obtaining from Eq.~1! mean firing rate plots forg0150.1,
g0,250.12, and various excitation frequencies, under the
sumption thata r564, rather thana r549, all other param-
eters being unchanged. The results corresponding to t
two values are shown in Fig. 8 in interrupted lines and so
lines, respectively.

For a r549, all other parameters exceptb being the same
or
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as for Fig. 7, we also performed simulations for a number
values 0.14,b,0.3. Results of the simulations are show
in Fig. 9.

VI. INTERSPIKE INTERVAL HISTOGRAMS

We assume againg0250, b50.16, s50.005, and the
spectral density ofG(t) given by Eq.~9!. Figures 10~a!–
10~c! show ISIH’s for g0150.12 and v0151.25, v01
51.05, andv0150.8, respectively. The best frequency
this case isv0'1.1 ~Fig. 6!, that is, Figs. 10~a!–10~c! cor-
respond, respectively, to harmonic excitation frequenc
higher than, approximately equal to, and lower than the b
frequency. The period of the harmonic excitation isT01
52p/v01. The ISIH’s of Fig. 10~a!–10~c! were obtained by
simulation from Eq.~1!. They are multimodal and agre
qualitatively with ISIH’s based on experiments@2#. Both for
the experiments and for Figs. 10~a!–10~c! the peaks in the
ISIH’s are grouped around the integer multiples of the per
of the harmonic excitation. Nevertheless, the firing is ape
odic, which is consistent with the fact that the motions
Figs. 10~a!–10~c! are chaotic even in the absence of nois
The preference for the forcing period and its integer m
tiples reflects the large spectral ordinate of the respons
the forcing frequency~which is typical of the harmonically
forced Duffing oscillator; see Ref.@13#, p. 88! and the cor-
responding subharmonics. Note the presence in Fig. 10
components with periods shorter than the dominant per
As was pointed out in Ref.@1#, p. 776, these component
reflect the existence of multiple firings.

Like the results of Figs. 10~a!–10~c!, ISIH’s based on the
FHN model@4# are in qualitative agreement with the expe
mental results of@1#. However, for excitation by nearly white
noise the FHN model does not appear to be in agreem
with experimental results@2#: The IHIS’s obtained from the
FIG. 10. Interspike interval histograms simulated from Eq.~1!: harmonic excitation in the presence of noise for excitation frequency~a!
larger than,~b! approximately equal to, and~c! smaller than the best frequencyv0, and ~d! excitation by nearly white noise.T01 andT0

denote the period of the harmonic excitation and the period corresponding to the best frequency, respectively.
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FIG. 11. Interspike interval histograms simulated from Eq.~1! for excitation by two harmonics with frequenciesv01 and v02 in the
presence of noise. Dominant frequencies are controlled by~a! the component with an inefficient frequency but relatively large amplitudeg02

and ~b! the component with a frequencyv01 close to the best frequency.
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experiments are multimodal, whereas those based on
FHN model were found to be unimodal, as shown in Fig
@4#. In contrast, simulations based on the proposed mo
@see Eq.~1!# agree well with the experimental results of@2#.
This is illustrated by Fig. 10~d!, which shows a typical ISIH
based on Eq.~1! with the same parameters as those of Fi
10~a!–10~c!, except thatg0150 ands50.035, that is, the
only excitation is stochastic. The ISIH is multimodal wi
periodicities closely related to the best frequency. The res
of Fig. 10~d! are consistent with Melnikov theory since com
ponents with the best frequencies~i.e., frequencies closely
related to the frequency of the Melnikov scale factor’s pea!,
are the most effective in inducing escapes. The behavio
the system can therefore be expected to be determine
those components and their integer multiples.

Melnikov theory as applied to our model is also in qua
tative agreement with results of experiments in which au
tory nerve fibers were excited by two harmonic functions
the presence of spontaneous activity@14#. In those experi-
ments the frequency of one of the harmonic excitations,
notedv01, was close to the best frequencyv0 , while for the
second harmonicv02,v0 so that its effectiveness in induc
ing firing was relatively weak. The results of@14# indicated
that the ISIH are multimodal, with basic periodT01
52p/v01 or T0252p/v02 according to whether the rati
h5g01/g02 of the amplitudes corresponding tov01 andv02
is relatively large or small. Similar results may be expec
for our model, as can be seen from Eq.~5!. Even though
S(v01) is larger thanS(v02), if the ratio h is sufficiently
small the motion can be dominated by the harmonic w
inefficient frequency. That this is indeed the case is sho
by the simulations of Figs. 11~a! and 11~b!, for which v01
51.0'v0 , v0250.06!v0 , b50.25, ands50.0075. For
Fig. 11~a!, g0150.01 andg0250.3 (h50.033). Apart from
the two peaks att/T02!1, which are ascribed to multiple
firings, the spikes are grouped around the periodT02 and its
integer multiples. For Fig. 11~b! g0150.1, g0250.16, and
periodT01 controls.

VII. POTENTIAL FOR STOCHASTIC RESONANCE

Equation ~1! describes a bistable system whose unp
turbed counterpart, Eq.~3!, has homoclinic orbits. It was
shown in@9# that such a system has the potential for expe
encing stochastic resonance~that is, an increase of the signa
to-noise ratio achieved byincreasing the noise intensity!.
he

el
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lts

of
by
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e-

d
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That potential exists provided that~i! the signal frequency is
sufficiently small in relation to the frequency of the Meln
kov scale factor’s peak,~ii ! in the absence of noise the sign
amplitude is too small to bring about chaotic exits from
potential well, and~iii ! the intensity of the noise is suffi
ciently small that the mean escape time induced by the sig
and the noise acting together is less than the period of
signal. By adding noise to the excitation the mean esc
time is brought in line with the period of the signal. A syn
chronization effect then occurs wherein the broadband
ergy associated with the chaotic hopping motion is deple
and transferred to the signal frequency. It is shown in@9# that
under certain conditions stochastic resonance may
achieved more effectively by adding to the total excitation
harmonic signal rather than noise. Since, as was pointed
at the beginning of this section, the class of systems stud
in @9# includes Eq.~1!, all the results of@9# pertaining to
stochastic resonance are fully applicable to the model of
auditory nerve fiber proposed in this paper. There appear
be experimental evidence that stochastic resonance is ex
ited by some neuronal systems@8#. However, to our knowl-
edge, no stochastic resonance experiments are availab
the auditory nerve fiber. We believe, in light of the abo
remarks, that such experiments would demonstrate that
auditory nerve fiber can indeed experience the stocha
resonance phenomenon.

VIII. CONCLUSIONS

We showed that existing experimental results motiva
the use of the stochastic Melnikov approach as a poin
departure for constructing a model of the auditory nerve
ber. The proposed model is characterized by a stron
asymmetric double-well potential and allows the use o
novel chaotic dynamics technique, the stochastic Melnik
approach. The model also has an inherent capability for
commodating stochastic resonance phenomena. Nume
simulations showed that the model reproduces qualitativ
features of the fiber behavior observed experimentally,
cluding features that appear not to be reproduced by the F
model. Like the FHN model, our model is entirely phenom
enological and its success as a quantitative tool depe
upon the choice of appropriate values for its adjustable
rameters. Numerical tests confirmed the robustness of
proposed model.
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APPENDIX: DIMENSIONAL COUNTERPART OF TERMS
IN EQ. „1…

For the purposes of this appendix it is sufficient to co
sider the termsẍ and «(x)g01 cos(2pf01t) of Eq. ~1! (v01
52p f 01). Their dimensional counterparts are, respective
d2X/dt2 and «(X)AP01 cos(2pF01t), where X5c1x, t
5c2t, F5 f /c2 , and X,t,A have dimensions mV, ms, an
mV ms22, respectively, andP01 is expressed in dB. Thu
,

at

-

a

,

l
-

-

,

g015Ac2
2P01/c1 . Our simulations in Figs. 7 and 8 were d

signed to represent the experimental results of Fig. 1.
scaling factors we used werec151 mV ~based on the re-
ported amplitudes of the firings of about 1 mV@1#!, c2
50.183/600 s50.328 ms~i.e., a nondimensional frequenc
f 0150.183 corresponds to a best frequency of 600 Hz!, and
A50.015 mV ms22 ~i.e., g01 corresponds toP01560 dB!.
Simulations yielded ratiosr5r ( f 01

best)/ f 01
best of 0.26 and 0.15

for g0150.12 andg0150.1, respectively. For the intermed
ate valueg0150.117 simulations yieldedr50.24. The cor-
responding experimental ratios forP01570 dB and P01
560 dB are 0.21 and 0.15. The agreement between sim
tion and experiment is excellent forg0150.1 ~corresponding
to 60 dB: 0.15 vs 0.15! and fair forg0150.117~correspond-
ing to 70 dB: 0.21 vs 0.24!.
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